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ABSTRACT

In the field of crowd counting, the current mainstream CNN-
based regression methods simply extract the density infor-
mation of pedestrians without finding the position of each
person. This makes the output of the network often found
to contain incorrect responses, which may erroneously esti-
mate the total number and not conducive to the interpretation
of the algorithm. To this end, we propose a Bi-Branch At-
tention Network (BBA-NET) for crowd counting, which has
three innovation points. i) A two-branch architecture is used
to estimate the density information and location information
separately. ii) Attention mechanism is used to facilitate fea-
ture extraction, which can reduce false responses. iii) A new
density map generation method combining geometric adap-
tation and Voronoi split is introduced. Our method can inte-
grate the pedestrian’s head and body information to enhance
the feature expression ability of the density map. Extensive
experiments performed on two public datasets show that our
method achieves a lower crowd counting error compared to
other state-of-the-art methods.

Index Terms— Crowd Counting, Convolutional Neural
Networks, Regression, Attention Mechanism, Voronoi Split

1. INTRODUCTION

Crowd counting plays an important role in public safety,
especially in crowd scenes such as concerts, sporting events,
and celebrations. Without proper management, stomping
events can occur and the basic premise of management is
to count people. Crowd counting is a challenging task due
to the occlusions, perspective distortions, and person dis-
tributions. Many researches have been done to solve these
problems. Among them, the CNN-based regression meth-
ods take a crowd image as input and produce a density map
which is further accumulated to get the number of people.
The head sizes in the same image may greatly vary, which
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Fig. 1. A crowd image with its corresponding density map.

poses a problem for CNN to extract scale-invariant features.
Many methods focus on dealing with this problem, including
multi-column networks, scale aggregation modules, and scale
invariance architectures. The typical multi-column methods
include multi-column fusion [1] and deep-shallow network
fusion [2]. The typical scale aggregation modules [3, 4] ag-
gregate scale-invariant features by different kernel sizes. The
typical scale invariance architectures [5, 6, 7, 8, 9, 10] focus
on the design of single-column architectures. Other works
also explore the weak supervision [11, 12, 13] to leverage
unlabeled data.

We focus on resolving two challenges in this paper: 1)
The previous crowd counting algorithms [1, 14, 2, 3] only
predict the density map, which cannot see the heads been
successfully or unsuccessfully detected. Thus, the perfor-
mance of the network cannot be explained. For example,
which factor contributes the most to total losses? To tackle
this problem, we innovatively design a bi-branch network via
adding a head location map (also head anchor map) predic-
tion branch. The predicted head anchor map is sparse so we
can get head detection boxes by post-processing. Besides, we
propose to use the attention mechanism to refine pedestrian
features, which can reduce the error responses shown in the
network’s output. 2) Most of the previous crowd counting
algorithms [3, 2, |] adopt a geometry-adaptive method to
produce density maps. We find that using such a method,
the network can misrecognize traffic signs and billboards
as pedestrian’s heads. Because the network can only learn
pedestrian’s head features without context such as body fea-
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Fig. 2. The architecture of the proposed method.
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tures. To this end, we exploit a Voronoi-based method to

produce context-awareness density maps. By combining the
geometry-adaptive method and Voronoi-based method, our
experiments show that this strategy can increase effectiveness
and robustness.

We evaluate our method on two crowd datasets Shang-
haiTech and UCF_CC_50. The results show that our method
can consistently outperform state-of-the-art methods.

2. PROPOSED METHOD

2.1. Voronoi-Based Density map

Most of the previous methods adopt a geometry-adaptive
algorithm [1] to produce the ground truth density map Fi,,

2
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where §; = de, andd; = L Z =1 ] d; represents the aver-
age distance from the annotated point to m nearest neighbors.
This method ignores the pedestrian’s body features, which
may affect the high-quality feature extraction and density map
regression. The misrecognition of traffic signs and billboards
are due to it. To resolve this problem, we propose a new den-
sity map generation method based on Voronoi split.

As shown in Fig. 3, Voronoi split is operated on all an-
notated points (head anchors) in the images. After splitting,
each pixel is affiliated to the closest annotated point. Then,
we draw a vertical line from the head anchor ' downward
and intersect the corresponding Voronoi polygon at D. An
ellipse is constructed inside the polygon, whose semi-axis a
and b can be estimated by:

fra=qd b=l ©)
where f indicates the focal length, d denotes the distance be-
tween F' and D, [ represents the average distance from the

Fig. 3. The left figure is a demo of Voronoi split and the
middle figure shows the Gaussian kernel considering the body
contexts of pedestrians.

annotated point to k£ nearest Voronoi polygon edges, and -y is
an empirical parameter and we set v = 0.8. We take a and
b as standard deviations of Gaussian kernel, so the proposed
density map is given by

N

Foor() = > 0(x — 2:) * G2 g2 () 3)

i=1

where §! = na , 62 = nb, and we set the empirical parameter
n=1

Due to the pedestrian’s body block one another in highly
crowded scenes, the head may be the only source for feature
extraction. The above-mentioned methods are combined to
produce the final density map.

F = (1= XFgeo+ AFyor (4)

where ) indicates the weight of two density maps, and we set
A is set to 0.5 in the following experiments.

2.2. Network Architecture

As shown in Fig. 2, the designed architecture consists
of three stages: 1) feature extraction that aims to learn low-
level features, 2) self-attention that aims to refine the learned
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features and 3) map regression that aims to learn anchor map
and density map simultaneously.

The feature extraction module is constructed by stacking
the first 13 layers of VGG16 [15], which contains three max-
pooling layers. The self-attention module [16] is adopted to
generate attention map, targeting to attend to pedestrian rel-
ative features. In particular, features from the feature extrac-
tion module are fed into a self-attention module which con-
sists of two paths, one for high-level feature extraction and
the other for attention estimation. The feature extraction path
is built by two residual blocks [17] that act as multiple detec-
tors to extract semantic structures. Inspired by the attention
mechanism that coherently understands the whole image and
further focus on local discriminative regions, we adopt atten-
tion blocks here. The attention path is built by an encoder-
decoder network that acts as a mask function to re-weight the
features for automatic inference of regions of interest. It is
difficult to directly learn anchor map from the extracted fea-
ture since the anchor map is more discrete than the density
map. On the other hand, density map regression can provide
common information for high-quality anchor map learning.
Moreover, it is easy to converge, due to the smoother Gaus-
sian filter. Inspired by this observation, we design a novel
map regression strategy, which decomposes regression into a
density map regression component and an anchor regression
component. The decomposition facilitates the optimization
significantly without bringing extra complexity in inference.

We use Euclidean distance as the loss function for both
two branches, which can be defined by:

N
1 en en
Laen(®) = 530 > IF" (X5 ®) = FIU[3 (5)
=1

N
1 anc anc
Lane(®) = 537 D IF*" (X33 @) = F" |3 (6)
1=1

where ® is a set of learnable parameters in our model, N is
the number of training image, X;is the input image. F**" and
F#7¢ are the ground truth. F"(X;: ®) stands for the esti-
mated density map, and F%"¢(X;; ®) stands for the estimated
anchor map. The final combinatorial loss L is formulated as
a weighted sum of L4, and L, as:

L =wLgen + (1 - W)Lanc @)

where w is a factor to balance the contributions of L., and
Lgpc. We empirically set w = 0.5 in our experiments.

2.3. Training Details and Post Processing

We train our model in an end-to-end manner from the
VGG16 pre-trained model. Moreover, we optimize the net-
work parameters based on the stochastic gradient descent
(SGD) optimizer. The batch size is set to 50, and the initial
learning rate is set to 1075, The learning rate is decreased by
a factor of 0.1 every 5 iterations.

GT:179
Estimate:172

GT:1074
Estimate:1067

Fig. 4. Examples of the predicted head detection box and
density map on the ShanghaiTech dataset. The ground truth
numbers and the estimated results are also shown below.

The produced head anchor map is more sparse than the
density map as depicted in Fig. 5. Thus, the post-processing
method can be used to roughly calculate the head detection
box. The post-processing algorithm first performs a threshold
to erase noise, then uses non-maximum suppression to extract
head anchor. Finally, the bounding box is estimated by using
the above mentioned geometry-adaptive method.

3. EXPERIMENTS

3.1. Evaluation Metrics

We use mean absolute error (MAE) and mean squared er-
ror (MSE) to evaluate our model’s performance. The MAE
and MSE are defined by:

N N
1 GT 1 2

MAE = =37 |Ci - ¢ MSE= | <3 |0 — 87
N 2 |Ci — Cy | S N 2 |C; — CET|

()
C; is the estimated number of person and CT means the
ground truth number of person. In general, the MAE and
MSE can show the accuracy and robustness, respectively.

3.2. Evaluation Results

ShanghaiTech. This dataset consists of Part_ A and Part_B
which contains 1198 images, with a total number of 330,165
labeled heads. There are 482 congested images in part_A
which are downloaded from the Internet, and 716 images in
Part_B which are taken from busy streets in Shanghai. We
slice the training images to patches and double them by PCA
whitening. The comparison results are shown in Table |, we
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Table 1. Comparing the performances of different methods
on the ShanghaiTech dataset and UCF_CC_50 dataset.

Method Part_A Part B UCF_CC_50

MAE MSE MAE MSE MAE MSE
Zhangetal.[18] 181.8 277.7 32.0 49.8 467.0 495.8
CP-CNN [19] 73.6 106.4 20.1 30.1 295.8 320.9
SaCNN [20] 86.8 139.2 16.2 25.8 314.9 4248
ACSCP [21] 75.7 1027 17.2 274 291.0 404.6
IG-CNN [22] 72.5 1182 13.6 21.1 2914 3494
DeepNCL [23]  73.5 1123 187 26.0 288.4 404.7
CSRNet [5] 68.2 1150 10.6 16.0 266.1 397.5
SANet [3] 67.0 1045 84 13.6 2584 3349
PACNN [24] 66.3 1064 89 13.5 2679 357.8
HACCN [10] 629 949 8.1 134 256.2 3484
TEDnet [25] 64.2 109.1 82 12.8 249.4 3545
Ours 63.8 938 7.8 12.0 230.5 316.9

find that our model achieves 0.4 lower MAE than the previous
state-of-the-art methods in the ShanghaiTech B. Besides, our
method also increases prediction robustness.

UCF_CC_50. This dataset [26] contains 50 congested images
of varying resolutions. The number of labeled head ranges
from 94 to 4543, which is very unbalanced. We used 5-fold
cross-validation to validate the performance. Considering that
this dataset is so small, we use ShanghaiTech A pre-trained
model to finetune it. The training just needs 5 epochs to con-
verge. The results show that our model achieves the lowest
MAE and obtains 19 lower MAE than the previous state-of-
the-art methods.

3.3. Ablation Studies and Analysis

Baseline. Our baseline model consists of a VGG16 front-
end and a density map regression branch. The density map
is calculated by a geometry-adaptive method. We perform
ablation studies on the ShanghaiTech B dataset. The results
are shown in Table

Attention. Attention block is a crucial module for improv-
ing performance, which aims to extract useful features. Be-
sides, the residual units inside skip connections of the at-
tention blocks can speed up convergence during the training
phase. We also assess the effectiveness of the different num-
ber of attention blocks. The results show that we achieve the
most effective performance with two attention blocks.
Anchor Map Branch. We measure the gain of adding bi-
branch architecture. The results show that the anchor map
branch largely improves performance. We also illustrate the
visualization results of the density map and anchor map us-
ing the PSNR (Peak Signal-to-Noise Ratio) and SSIM [27]
metrics. As shown in Fig. 5, the anchor map is more dis-
crete than the density map. Due to this attribute, the anchor
map branch can add strongly prior information of head loca-
tion for the density map learning, meanwhile, the density map

Table 2. Ablation studies of self-attention, anchor map
branch, Voronoi-based method on the ShanghaiTech B dataset

Method MAE MSE
Base 33.8 50.6
Base+Anchor 212 324
Base+Attention(2) 13.1 18.9
Base+Anchor+Attention(1) 11.0 17.3
Base+Anchor+Attention(2) 9.2 13.3
Base+Anchor+Attention(3) 10.6 16.0

Base+Anchor+Attention(2)+Voronoi 7.8  12.0

PSNR:26.03 SSIM:0.92

PSNR:25.61 SSIM:0.84

Fig. 5. The middle and right figures are the density map and
anchor map produced by our network. PSNR and SSIM are
also calculated below.

branch promotes the anchor map branch convergence.
Voronoi-based Method. We further evaluate the effect of
the Voronoi-based method. As shown in Table 2, the per-
formance is improved by 1.28. The results show that using
the Voronoi-based method could effectively enhance perfor-
mance. We also evaluate the Voronoi-based method on the
UCF_CC_50 dataset, due to the inadequate body context in-
formation in such a crowd scene, that is the reason why it
has slight improvement, so the network can only extract head
features.

Visual Analysis. As shown in Fig. 4, we find that when peo-
ple are close to another person, the network usually misrecog-
nizes them. Furthermore, in an extremely crowded scene, the
output response of the density map is locally plain. It means
that strong supervision is required to extract a tiny head. It
validates the utilization of our bi-branch architecture that si-
multaneously learning general features and head locations.

4. CONCLUSION

In this paper, we propose a Bi-Branch Attention Network
for crowd counting. The Bi-Branch architecture and attention
blocks make the model extract more detailed and accurate
pedestrian features. Besides, a new density map generation
method based on Voronoi is also been exploited. Extensive
experiments demonstrate that our method can significantly
improve the baseline model and outperforms the state-of-the-
art methods.
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